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,j.;-} ' MONTONE RECURRENCE RELATIONS,
-{':-' ) THEIR BIRXHOFF ORBITS AND TOPOLQGICAL ENTROPY
h . Sigurd Angenent'
::“ $1. Introduction.
C
gz‘ In this paper we shall study a class of dyramical systems which
:u; , generalizes the class of "monotone twist maps" of two dimensional annuli, and
et
:$2 also the class of "“degree one circle maps®, both of which have been studied
;ig extensively in the last decade or two.
" The maps which we shall deal with are continuous maps ¢ of the
{Z& generalized annulus st x Y (N>0) into itself. The defining condition of
f E these maps is that they come from solving a recurrence relation
3 .
o (1. 1) AlXyg_greeesXqn) =0 (¥ k ¢ 2)
)
t:j in the first coordinate of a general point in s x V. fThis is explained
A
asg . more precisely in section two.
- Our main concern is with the construction of Birkhoff orbits of ¢
i}é" (defined in section three), and a criterion for positivity of the topological
{;% entropy, htop(v)' of the map g¢.
?2. The main tool which we use is presented in section four, in the form of
’:: theorem 4.2 and two afterthoughts. This theorem allows us to construct
3-; gsolutions of the recurrence equation with prescribed qualitative properties.
é? The method of construction is a discrete analog of Perron's method of solving
&
%; the Dirichlet problem i.e. his method of constructing harmonic functions with
S?ﬁ prescribed boundary values from subharmonic functions and "barrier functions"
%g‘ (or super harmonic functions).
R
o
i
tan This research was partially supported by the United States Army under Contract
: - No. DAAL03-87-K-0043, by a NATO Science Fellowship and by the Netherlands
.sg Organization for the Advancement of Pure Research (Z.W.0.).
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‘“ig As a first application of this method we show in section five how the
BN .
» “ . .
‘?V, existence of certain kinds of orbits of ¢ implies the existence of a
LA
' Birkhoff orbit, thereby generalizing a result of G. R. Hall ([Ha 1]).
G
’:' In section six we formulate hypothesis 6.1, which roughly speaking,
> ’
1w
T%ﬁ; asserts the existence of two solutions of (1.1), say xé1) and xéz), which
A
u;' "exchange rotation numbers” in the sense that
%)
'
il
'iai x!(11) x1(12)
‘:. lim > m1 ; lim
'v"o. no»o n+=-—co
. and
v
fé& x(2) xr(l1)
R lim < w, < lim
A8 n+w n+=c
35 hold for some wg < wqe It is shown that this hypothesis implies the
e
i
i existence of Birkhoff orbits with any prescribed rotation number ¢ in the
AL
" interval [
K ! ncerva wo,m1] .
:; A more complicated construction, which is carried out in section seven,
¢
0
vg‘* shows that the hypothesis (6.1) implies that htop(v) > 0. In fact we show
.
B that there is a compact set K C s! x B such that some iterate of ®
J
qs leaves K invariant, and has a Bernoulli shift as a factor, when restricted
L -
‘cﬂ to K. Here we partially generalize another result of G. R. Hall, who in turn
) .
6 :
f,) was concerned with giving a topological version of a "shadowing theorem" of
(ﬁ J. N. Mather's (see [Ha 2] and [Ma 2] where Mather's result is announced). A
[}
ot
Q& consequence of this construction is that the number of periodic orbits with
)
Al '
Al period ¢ N grows exponentially with N. Moreover, our method of proving
c~, existence of these orbits is constructive. Given x{1) ana x(2) a computer ,
|
Y |
f?: program could be written which constructs a great number of periodic orbits. ‘
e |
Ly In section eight we specialize our results to the two dimensional case,
.:k and ask which properties a map (i.e. a monotone twist map) with zero
K
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¥
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topological entropy must have. The first result in this direction is that,
if htop(y) = 0, then any orbit must have a forward and backward rotation
number. Similar results, under different hypotheses, have been obtained by
M. Handel. The other result is that, if htop(¢) = 0, then any periodic
orbit "of type (p,q)" with gcd (p,q) = 1 must be a Birkhoff orbit. This
result is originally due to P. Boyland [Bo]. As far as I am aware, both
Handel and Boyland rely on Thurston's classification of surface diffeo-
morphisms. By contrast, our approach is self contained, and as we have
pointed out before, constructive, in a certain sense.

Throughout section eight we could have weakened the hypothesis "htop(¢) = Q"
to "there is no invariant set K C S’ x R! such that ¢|K has a subshift of
finite type as a factor. However, a theorem of Katok ({Ka 2]) shows that this
is not very much of a weakening. Indeed, if the map ¢ is c'*€, then his
theorem says that both conditions are equivalent.

The next section, the ninth, deals with the question of existence of

Birkhoff orbits in general, i.e. without further hypotheses on the map ¢. We

obtain the existence of Birkhoff orbits with prescribed rotation number u,

not for the original map ¢, but for a "translated map" which comes from the
recurrence relation A(xk-z"°"xk+m) = ) for some ). In general this )
will depend on u, and will not be zero. From this result we derive a
sufficient condition of the existence of at least one Birkhoff orbit of the
original map ¢. The condition turns out to be (trivially) necessary as well.
We conclude this section by briefly specializing the results to the one
dimensional (i.e. degree-one circle maps) and the two dimensional (twist map)
case.

Finally, in the last section, by way of example, we indicate a number of

symplectic maps ¢ which belong to the class of maps which was studied in
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\:-\ this paper. 1In particular we show that there is a very simple mechanical
e .

"N model, whose steady states are described by such maps.
/

M :
) :‘ §2. Twist maps and recurrence relations.
N

(N
::!. I Let A be the cylinder (R/Z) x R, and let ¢ : A+ A be an
')

”wi orientation preserving monotone twist homeomorphism. On the universal cover
e

:4:: R2 of A a lift of ¢ will be given by

R
F(x,y) = (f(x,y), g(x,y)) .,
Ky where f, g are periodic in the sense that

\ L]

ok

~ f(x+1, y) = f(x,y) + 1

) (2.1)
N gi(x+1, y) = gi(x,y)

®

>od (i.e. x is the angle coordinate). The monotone twist condition on g says
o

P ‘:l':-

t‘._: that the function f(x,y) is strictly increasing in y.

_‘ In addition we shall assume that ¢ satisfies the infinite twist
1N
b

::t { condition:
3

p)

& lim f(x,y) = t= .

-\."w,

W, Y+t
oo -
. .;Q' Combined, these two conditions imply that for any pair x, x ¢ R there is a
” unique solution Y(x,;) of the equation

D)

,.‘ fx, Y(x,x)) =x .
A.::l -—

"!': This solution is a strictly increasing function of x. It is continuous, and
"\!"v

Sidd satisfies
D '
» "Q' Y(x,x) = Y(x+1, x+1)
¢ Y

. N —
. '.: for all x, x ¢ R.

] From Y(x,;) we con;tmct another function:

Jod - = -

_\: Y(x,x) = g(x, Y(x,x)) -

o \ -4~

)

DACLA,
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This function is also continuous, and periodic in the sense that ;kx,;B =

;kx+1, ;;1). We shall now show that Y(x,;3 is a strictly decreasing

FE LS T A T

function of x.

Fox fixed Xy the image of the line x = Xg under the map F is given
by the graph of the function Go(;3 = g(xo, Y(xo,;3)- This graph divides the
plane into two parts, one above it, and one below it. If x4 > X is given,
then the image of the line x = x4 must lie in one of these two parts. Thus
we either have g(xg, Y(xo,;3) > g(x1, Y(x,,;a) for all x ¢ R, or we have
the reverse inequality for all ;-c R. Since ¢ and F are orientation
preserving the latter cannot happen. Therefore Xg < X4 implies that
Y(xg,%) > ¥(x,,%).

The construction of Y also shows that

lim  Y(x,X) = 4=
X+t

and similarly 1lim Y(x,;3 = Foo,
x+¥e

Consider a sequence of points (xk,yk) (keZ) in the plane. They are the

orbit cf a point under the map F if and only if they satisfy

%err = £

Yk = g(xk-1lyk-1)
for all k ¢ 2. The first equation is equivalent to Yy, = Y(x,xx,q) for
all k. If we substitute this in the second equation we get the following

equivalent set of equations:
Y = YO5%,y)
Y = 7kxk_1,xk) .
We see that a sequence of points (xy,yyx) is an orbit of F if and only

if the x coordinates satisfy

1,
»
¢
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(2.2) AlXy_qsXyrXppq) =0 (V.k € 2)
and the vy, are given by vy = Y(xk’xk+1)' Heré we have written
(2.3) A(x_q,%X5,%Xq) = ¥(xg,x4) = ;kx_1,xo) . i
So instead of studying orbits of the map F one may as well study
‘ solutions of (2.2).
The function A which we have just introduced satisfies the following
hypotheses. It is continuous, it is monotcne increasing in both X_q and
X,q, and
B im0 qoxgxy) = Lm o AGx_gixgex) = g
-1 = 1 -
Finally, it is periodic in the sense that
Alx_qixgexq) = A(X_q+1,Xxg+1,x4+1)
holds.
Motivated by this example we shall consider monotone recurrence relations
of type (2,m) for ¢, m » 1. We define such a relation to be one of the I
form
(2.4) B(Xy_greeesXyyy) =0 (k ¢ 2)

where A is a continuous function of 2 + m + 1 variables which satisfies

the following conditions:

(2.5): a monotonicity A(x_j,...,Xy) 1is a nondecreasing function of all

the x4 except possibly Xge Moreover, it is strictly increasing

in the variables x_, and xg,.

) = A(x_z+1'oo- 'xm+1)'

b periodicity A(XagreeeeXm

g_coetciveness 1lim A(x_l,...,xm) = 4o ard

X _+tw
- -

lim A(x-l, s e ,xm) = tﬂ .

X ++twm
m-

-
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If (xk-i""'xk+m-1) is given then conditions a and ¢ imply that we can

solve (2.4) for xp,n. In this way we have defined a continuous map Fy
from RY'™ to RY'™, given by
FA(xk-t""'xk+m-1) = (Xp_peqrevesXuyn) o

The conditions a and ¢ also imply that we can solve (2.4) for Xgog if the
other variables are given. Thus the map F, is a homeomorphism of g
onto itself.

Throughout the paper we shall keep one fixed Z action on R g
mind. It is given by

(x-l"."xm-1) + i = (x_£+i,oo.,xm_1+i)

for i € Z. The quotient Rtz ig homeomorphic to s' x RO*M-1,  we shall
call it A2+m, since it generalizes the annulus (R/Z) x R which we started
with.

The periodicity condition b implies that Fp is equivariant with respect
to the Z-action on R!'®, i.e. Fp(x+i) = Fp(x) + i. Hence it defines a

homeomorphism on the quotient A, yhich we shall call Pp° This class of

-homeomorphisms is our generalization of the class of monotone twist maps of

the annulus.

Our assumption that £ > 1 is not a necessary assumption. If we allow
£ = 0 then we can still define the maps F, and ¢, as above. The only
difference is that they need not be invertible anymore. Except for this all
the results which we shall derive in the following sections remain true. In
particular they apply to degree-one maps of the circle. If h : R+ R
satisfies h(x+1) = h(x) + 1 then the solutions of (2.4) where have taken

A(xoox1) =Xxq = h(Xo)

are exactly the orbits of the map h : R+ R. Our map ¢, is the map which

h induces on the circle R/Z.
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tc\j §3. Birkhoff orbits, and the space X.
1 . ]

- \1
,c}ﬁ Let X denote the space of bi-infinite seqdences of real numbers, i.e.
ﬁ' X = R. wWe equip X with the product topology.

o

:; The space X is also partially ordered by:

&Y
gy
3#.' x <Yy <§§§ x, <Y, for all integers k
) ‘ = k
;jﬁ where x, y ¢ X. The following notation is sometimes used:

RS
\:_-.'

-
A x <y <§§§ x <y and x#y ,
‘:

deg
== < .

s x <<y X <y, for all k ¢ Z

N
HESA
- Given a pair of sequences X, ¥ € X such that x < y we define the order
: -'.:(

- interval
o
B (x,v] ={zeX:x<z<y" .
r _‘\.'
' . . . . .

,:; Any order interval is homeomorphic to the product [0,1]z; which is a compact
SN
4 metrizable space.

.r_:.;
'j:: On X we have a Z x Z action, T, given by

J-
S

Tm,n{X)j = Xj_p+n .

1
(Y}
’
ettt e

W s
“

3

This action is compatible with both the topology and the partial ordering we

-9,
X \('\|
oo have on X.
sj{
:i; A sequence X ¢ X will be called a Birkhoff-sequence if for any pair of
) . ,
) integers (m,n) one either has 1p,pn(x) > X or 1p pix) < x. We shall
A
'
A denote the set of all Birkhoff sequences by B.
‘.5 An equivalent definition of a Birkhoff sequence is the following. A
e ¥
E X sequence x ¢ X is a Birkhoff sequence if and only if for any i, j, k ¢ 2
AR
N
:f:' one has
h .
i
:fy Xj € Xy +k <==> x3,.4 < X441 +k .

)
o

Thus, if fxi‘ is the sequence of x-coordinates of an orbit of a monotone

t
K
0
) -B-
!
el
o
) ‘(- '-". . e ‘¢:'i.'v".h>'};‘"f_‘ AT BTN THhY L N L XV e W ~ . . .- e e .
) 5 ,\.Q. .hl X 0 XS .q ‘ .‘" "" .A"Q. -“. B it '. .. ._ \" . - ‘ \ :~‘.\J‘\" '('N" \’.\':;;
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twist map, then x is a Birkhoff sequence if and conly if the map preserves
the order on the corbit. This is the usual definition of a "Birkhoff-orbit"
(see [Ka 1]).

It is known that if x « B is a Birkhoff sequence, then x has a
rotation number, i.e. the limit

fﬁ def
k

lim =y = w(x)

K+
exists. 1In fact one has the following inequalitie.

(3.1) xg *+ luk] € % < xg + luk] + 1 (k€ 2Z)

where lwk| is the largest integer below wk.
The set of Birkhoff sequences, B, which is the intersection of the sets
(x) » x or

{x « X : (x) < x}, is a closed subset of X.

Tm,n Tm,n

The whole set B is not compact, but the inequalities (3.1) imply that

for any two constants a, B > 0 the closed set
{x eB | |xg] <a anda lu(x)| < 8}
is contained in an order interval, and therefore compact.

We shall occasicnally say something about periodic orbits "of type
(prq)”.

If the map ¢, of rR¥*™/2 has a periodic point P with period q,
then some lift (x_i,...,xm_1) € R£+m of P will almost be periodic in the
sense that the corresponding sequence {x., k € Z} ¢ X satisfies
(3.2) Xkeq = Xk * P (k € 2)
for some p ¢ Z. Another way of saying this is x = rp'q(x).

By definition any sequence x e‘x will be said to be periodic of type
(p,q) if it satisfies (3.2).

If x ¢ X 1is periodic of type (p,gq) and if x 4is also a Birkhoff

orbit or sequence then x is periodic of type (pp.qqp) where p = f2epg.

=0

4 f‘

N
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q = 29, and ¢ = gcd(p.q).

Indeed, x ¢ B implies that we have 1t .(x) >x or 1t (x) < x.
Pp+dp Pg+9g

Suppose the first holds, and for some i ¢ Z we have

Tpo'qo(x)i > xi, io&- xi_qo + po > xi .
. ! Then T (x) » x implies that for all k ¢ 2
Pgr9g
.iﬂ
o
X1-kqy * KPo > Xj-(k-1)qy * (k=1Pg
so that X; = xi-lqo + lpo > X5, a clear contradiction. 1f we didn't have
tpo'qo(x) > x but TPO'qO(X) < x 1instead then the same argument would show
that we still have 1T (x) = x.
Ppr9g
§4. Subsolutions and supersolutions.
fL+m+1 R
Let A € C(R ) Dbe a monotone recurrence relation of type (&,m) as
we defined them in section 2.
A sequence x ¢ X is called a subsolution for A iff
..\. (4.1) A(xj-l'.‘.,xj+m) ? 0 (Vj € Z)
o
_:} holds. sSimilarly, a supersolution is a sequence x ¢ X such that
i
(4-1') A(xj_z'.al'Xj+m) < 0 (Vj € Z)
holds.

The next lemma states some of the elementary properties of sub- and
super-solutions.

Lemma 4.1. (a) The set of subsolutions for A is closed in X.

The same holds for supersolutions.

(b) If {x(a)}aeA is a family of subsolutions which is bounded from
(a)

above (w.r.t. the partial ordering on X) then sup x

-10-
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defined by

C(a)y (a)
(sup x )i = sup(xi )
a a
is a subsolution.
Analogously, a familv of supersolutions x(@) which is

bounded from below has an infimum, and inf x(®) is again a

supersolution.

Proof: Part (a) follows immediately from the continuity of the function

To prove part {b), let x(@) pe a family of subsolutions, indexed by

a €A, and let x = sup x(a). Then for each j ¢ Z there exists a sequence

of ajk's for which

(e ) K
x, % >k, -2 (k = 1,2,3,..,5 € Z)
J J
_ (a.k)
holds. Clearly x = sup x J so that we may assume that the family of
ik

x(a)'s is countable. Moreover, if one defines
(ij

<(N)

)
= sup(x | 0 <x, |5] ¢

then, as N 4 », the x(N) converge in the product topolegy on X to X.
In view of part (a) of this lemma we only have to consider the case in which
the number of x(a)'s is finite. 1In turn, this may be reduced to the case of
only two x(“)'s, by means of an induction argument.

So consider two subsolutions x, y € X and let x = sup(x,y) be their
maximum or supremum. Let j ¢ 8 be given, and assume that Xy 2 yye Then

for any nonzero integer k in the range -¢ < k < +m one has xj+k > X4k

so that the monotonicity of A (i.e. hypothesis 2.52) implies that

A(xj_l,...,xj+m) 2 A(xj-l"°"xj+m) 20 .
If xj £ Yy then one has, for the same reasons,

-11~-
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. a

8 _ _

»;;- A(.xj_l,vno,xj*’m) > A(yj-l’."’yj+m) ) 0 .

)\»"n

b - - -
‘. . In either case we obtain A(xj-!,""'xj-bm) > 0 for arbitrary 3j, so that x
; A is a subsolution. This finishes the proof of the lemma.

::::: The next r:sult shows how subsolutions and supersolutions may be used to
)

construct actual solutions of the recurrence relation (2.4).

Theorem 4.2. Let x, x ¢ X be a sub- and a supersolution, respectively

which are ordered: x < ; Then there is at least one solution of (2.4), say

8 - _
e x, between x and x, i.e. for which x < x < x holds.
,‘,., Proof: Define

N X902

o

"

'l —

N S ={x ¢ X | x is a subsolution and x < x} .

~

. Clearly S is bounded from above, so that
:'_:::' X = sup S
\:_ exists. Since x ¢ S we have x < x < x. By our previous lemma x is again
O35
l' » .
. a subsolution, and therefore x ¢ S. We have for every integer j

::._: (4.2) A(xj_l,...,xj'+m) b 0 .

.‘.\'-

l\.

We claim that equality holds for all j, i.e. that x is a solution of

(2.4).

R C "‘."'

To reach a contradiction assume that for some Jj strict inequality holds

<«

in (4.2). Then we must have Xy < ;j’ or xj = ;j'

1

M osgigiringm

3 In the first case we define
R
L)
:":t: x; +e if 3 =k
T €
. = )
N * T if §#Kk .
o J
s
j_'-.‘ The monotonicity of A implies that A(xﬁ_l,...,xﬁ_m) > 0 whenever k # j
N
~
: and ¢ » 0. Since we have strict inequality in (4.2) and A is continuous we
“~
&)
~
'S also have A(x§-1'°"'x§+m) 20 if ¢ > 0 4is small enough. So for small
\.": € > 0, x¢ belongs to S, but x® > x which is a contradiction.
:,
A
",r -12- -
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,,_-;. In the other case, i.e. xj = xj, we observe that, due to the
\_‘:..:
/ monotonicity of A,
};“ ~ A(; oo.; ) >A(x s e X ) >° .
2 bt M =27 i
.ﬂ' —

j: But x 1s a supersolution so that we have a contradiction again.
W
v We must conclude therefore that x = sup § is a solution of the
B .I':
tJ‘-, recurrence relation.

&
S
:-*: It should be clear from the proof that if we had defined
LA

S=ixex| x> x and x 1is a supersolution’®

'
* —
'.. then inf 8§ would also be a solution of the recurrence relation. 1In general
1.0
s8] —_
::ﬂ one expects inf § and sup § to be different.
w!
‘“ The theorem can also be used to construct Birkhoff orbits or sequences.
08 _
"'-t Addendum (4.3). If at least one of x and x is a Birkhoff sequence,
o

. —
f,' then there exists a solution x of (2.4) which lies between x and x, and

igs a Birkhoff sequence. i

Proof: Let x be a Birkhoff sequence. Then we shall prove that x =

-
ol :

.
L
oo W

sup(S) also is a Birkhoff sequence.

l.'
xa

o 2

Let m, n be given integers. Then we have L. n(;) < x or
J (4
n"f: - -
:_:_ Tm’n(X) > X.
>
"' In the first case we have, for any y ¢ §,
K0
. — —
N Tm,n(Y) < rm'n(x) < x
::.
.ﬁ: so that 1, (y) € S (note that the translations 1tp , preserve the ordering
v,
o,
bt on X). Thus 1ty ,(S) CS and
v_ Tn,n(X) = Ty plsup S) = sup Tqn(8) <sup S =x .
Q.
N
:'::- In the other case we have ¢ n n(x) < x, SO that the same argument shows
".‘l ] '- =
>
(.V that 1t_p,~pn(x) < x or, Tm,n(x) > x.
"
l": The conclusion is, that for any m, n ¢ Z, one has either Tm,n(") < X
-~
.
"
® -13-
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'h\
G~
<4
X
::::: or Tm,n(") > X, 8o that x is a Birkhoff sequence.
v :.:.' _
.': If x is not a Birkhoff sequence, but x is then one shows in the same
S
: way that inf(S) 1is a Birkhoff sequence.
s : -
‘:_.}: Addendum (1.4). If at least one of x or x is periodic of type
*. e | —— —
'
o (p,q), then there exists a solution x of (2.4) which lies between x and
‘ L
;l:" x, and is periodic of type (p,q).
o
v - - -
) - i i . =
:'. Proof: Let x be periodic of type (p,q) Then tp'q(x) x, and
i‘.
R therefore y ¢ S implies 1j 4(y) € S. But then 1, . (sup §) = sup S, so
4-:: that sup S is periodic of type p,q.
u"\- -
,‘,.':: Likewise, if x is periodic of type (p,q) then so is inf s.
oy
N
L]
LS
e §5. A generalization of Hall's theorem.
| f.-
~ In [Ha 1] G. R. Hall proved that any monotone twist map, which has a
V.\_f:: periodic orbit of type (p,q), must have a Birkhoff orbit of the same type.
ey,
':: The following theorem generalizes this result.
M
o
N Theorem (5.1). Let x ¢ X be a solution of the monotone recurrence
Q\- relation (2.4) for which one can find a real number  such that
oy
)
s M=sup|x -k-m[<¢-
"3' keZ k
ey
[ ]

Then (2.4) has a Birkhoff solution whose rotation number equals w.

>y

Proof: Any translate Tm,n(") of x is also a solution. Our

‘,,.,._.

" e’
j>_a
-
-’

assumption implies that

-

e
= < *

3 };:‘ x S“P(Tm~,n(") | n g mew}
N

and
N
" _

N X = 1nf{rm'n(x) | n > mew}

P

both exist and that

..,
-
3
o

-

e T S S, .
. SR S R AR
4.'{\" n Al 0T, s, e




‘.'i -—
“.:; holds. So if we define y)p =xx - 24 and y, = ;k +2M then y is a
o - -—
N subsolution, y is a supersolution and y < y.
e
! Moreover, y and y are Birkhoff seguences.
o)
;Q To see this let r, s ¢ Z be given and consider Tr's(i):
‘,P
" T, (%) =suplry, o (x) | n < mw)
o
= x <mw+s5 -7
o sup(rm'n( ) | n w+ s w)
N
e 2x if s> ruw
g
P £x if s<rw . |
[
e
_':. Thus x is a Birkhoff sequence, and therefore y is one too. RA similar
! argument proves that ; is a Birkhoff sequence.
'-: The addendum to theorem 4.2 implies that the recurrence equation (2.4)
J -—
*’ has a Birkhoff solution y, between y and y. Clearly y must have
i
Wl rotation number w.
2
b
b,
Ao,
»
?
v
. §6. Quasiperiodic orbits with prescribed rotation number.

-
rd

In this section we assume that for some wg < w4 there exist a

2y

subsolution x and a supersolution x of (2.4) such that

148
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;k
lim inf — >
k 1
koo
lim sup EE-) )
x 1
| S
(6.1) —
l1im inf fE < w
k =0
v k=
X
lim sup iE-S wy
k++o -

holds. The main result of this section is:

Theorem 6.1. For any u € [mo,w1] there is a Birkhoff solution of (2.4)

with rotation number u.

OO, "™ ; .
kX :::fa‘.fl'.‘_\'.,n SO "'ll ey, l‘ W 'l'. u"‘ g .t' 0O qfl':f":fn'::t‘:fn".'c'.'h"'i"'v'. _o‘:‘,t‘. ALY ‘4'

Prcof: The inequalities (6.1) imply that

1lim inf lkl-1 . ()ﬁ< = wek) > minfw,-w, w-w,) > 0
kot

and

71 . x

X - wek) < max(m-u:,, mo-w) <0 .

lim sup |k
k++o

Hence there is an integer N > 0 .such that for all k ¢ Z one has:
(6.2) ;k>mk-u and x < uwk +N .
Now define

y = inf(rm'n(x) + N | n > mw
y = sup(t,  (x) =N | n ¢ ma) .

Then, on the ground of arguments similar to those which were used in the proof
of theorem 5.1, one concludes that ; is a Birkhoff supersolution with
rotation number w, and that y is a Birkhoff subsolution with the same
rotation number. ‘

Furthermore (6.2) implies that

yk>wk>xk ’

-16-
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i.e. that y < -y- By theqrem 4.2 and the addendum (4.3) there must be a

Birkhoff solution y betwiZen y and ;. This Birkhoff solution has rotation

number . ‘

§7. A criterion for positive entropy.

Under the hypotheses of section 6 we can construct a great number of
orbits of ¢,. This construction leads us to the following conclusion.

Theorem 7.1. Let the monotone recurrence relation (2.4) have a sub- and

2 supersolution, x and x respectively, which satisfy (6.1) for some
wg < Wqe

Then the map oA has positive topological entropy. In fact there is a

compact subset K ﬂA"“ﬂ such that some iterate of P leaves K

invariant, and has a Bernoulli shift as .a factor, when restricted to K.

Since the existence of K implies positivity of the topological entropy
of ¢, we only have to construct it to prove the theorem.

The construction proceeds in three steps. In the first step we use x
and x to construct a nicer pair of sub and supersolutions w and w, which
are wedge shaped, as in figure 1.

Then, in the next step we consider a biinfinite sequence of translates
of w and w. These translates of our original wedges are chosen in such a
manner that, if W denotes the supremum of all subsolutions in question, and
W the infimum of the translated supersolutions, then W < W and from the
results in section four we know that there is a solution W between W and
W. It turns out that we have so much freedom in choosing the translated sub-
and supersolutions that we can let the constructed solution W follow any

*zig-zag pattern™ we like (see figure 2).
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Now let's £fill in the details.

The wedge like sub and supersolution

Choose two rational numbers pg, py such that
No<p0(p1<w
holds, and define the functions
z(t) = pot+ - p1t_
2(t) = Pty ~ Pot.
where t, = max(t,0) and t_ = max(-t,0).
From our sub~ and supersolution x and X we construct new sub and

supersoluticns

w = sup{rm'n(g) :n < z(m)}

(7.1)
n>»z{m} .

w = 1nf{rm'n(§3

Lemma 4.1 assures us that w is a subsolution, and that w is a
supersolution.
Our hypothesis (6.1) on x and x implies that
x> Z(k) = M
and

X < z(k) + M

holds for all k ¢ %, with M independent of k. For any (m,n) with

n £ z{m) one has

(T x) +n

m,n — k = §k~m

z(k-m) + M + z(m)

A

z(k) + M

A

(note that <~z(t) is sub additive, so that =-z(k) » =z(k-m) - z(m) ). Thus

after taking the supremum over all m,n with n < z(m) one finds
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:k £ z(k) + M .
Furthermore, if one puts m =k and n = [__z(k)_l~ (the largest integer below
z(k) ) then
¥ 2 (tp,n Xk = X9 + L200)] .
Without loss of generality we may assume that the constant M is so large
that M > |ED| + 1. Then we have just proved that

(7.2) lwe = ztx)| ¢ M

for all k ¢« Z.
A similar argument gives

(7.3) I, - z200)] ¢ M

(it may be necessary to increase the constant M one more time).

Construction of a zig-zag solution

In the previous step we had chosen two rational numbers pg, py. Let
Q be a common multiple of their denominators, so that opoQ and p.Q are
integers. We choose Q so large that

Let {ek; k € Z} = e be an arbitrary biinfinite sequence of zeroes and
ones (i.e. e = 0 or e = 1 for all k ¢ Z). Given such a sequence we
define two functions, Xe(t) and Ceft)e On the interval 3jQ < t < (j+1)Q

we define
XQ(t) " Pea ’
3
i.e. p, Iif ey = 1 and pq, if ey = 0. The other function is given by
t
Celt) = fo Xe(s)ds .

For any integer j, [o(3jQ) is an integer, and we always have the inequalities

=20~
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L

,xsﬂa‘!
P Fa

z(t) < go(t) < z(t)

»¢
2NN
(O N R B 4

whatever e is.

e

Now define

R

= sup{t (w) | 5 € 2}

s

W . .
—e JQ:Ce(JQ)

x
Les

W, = inf(t (w) | 3 €2} .

COF.
-

30,5, (3Q)

'$€ )

5
NN

= &

Proposition 7.2.

LY
4
FaY
z

Iw

-e,k - ;e(k)I

A
=z

oo~ ) -
100 Proof: For any m ¢ Z we have H

{

L4
gy

AR

50,z (3Q) N 7 G

-

s »

v
£
NS S

o

=¥ go * 513D - g (m)

P

: . m
= ¥pogo  Z(m-3Q) + z(m=3Q) - ij Xo(s)ds

COARRAY

’
Y

< - z(m-3Q)

n-30

‘l\,.‘

A

M

where we have used (7.2) in the last step, and the inequality

-
S

x+t
X

3 5..n5??¢

z(t) & [ xg(s)ds (¥t ¢ R, x ¢ R)

L 2
v
SHhNA

(vhich follows from pgy €< xe € pq) in the second last step. This proves one

2NN
- 5.*-"-

half of the first inequality. To prove the second half we choose an integer
e j such that 3Q < m < (j+1)Q.
If ey = 0 then

Yem * T30,z _(30) (W)

'u-’,‘ - .w_m_jQ + ;e(jQ)

@ -21-
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» z(m~3jQ) + ce(jQ) - M
= po(m-jQ) + ce(jQ) -M
=CeUQ)-M-

In case ey = 1 one compares We p with T(3+1)Q, 5 ((3+1)Q) (w)n to arrive

at the same conclusion.

Therefore the first inequality in the Proposition holds. The proof of
the second inequality is analogous to that of the first.

It follows immediately from this proposition that W, - M and ;; + M

are a sub- and supersolution, and the W, = M < G; + M, so that there must be

at least one solution W of (2.4) which lies between Eé - M and E; + M.

Construction of the set K

Let Io denote the set of solutions of (2.4) such that W, - M < W
< ;; + M. We have just seen that [, is nonempty.

Let I be the union of all I, where e ranges over all possible
- {0, 1}~sequences.

To define K, we recall that it has to be a subset of RV /z,  where zZ
acts on RMM via (x_,,.eXpoq) + 1= (Xogtleee Xpo gt ).

Then we put

K, = {(X_gseeesXpy_q)mod Z | x € Le}

and

K= {(X_g,ece,Xp_q)mod Z | x € T} .

Proposition 7.3. K and the K¢ are compact.

Proof: Since [, is contained in the order interval [ge-M, §e+M] it
is precompact in the product topology on X. Since it is closed I, is in
fact compact.
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definition of the W, and E; one more time then one sees that this implies

Bach X, is the image of Le under the projection map from X to
RE*M/2Z, which is defined by

n(x) = (x_l,...,xm_1)(mod Z)
for x € X. Thus Fe = m(Le) 1is also compact (the projection map is
continuous).

We claim that ¢ is also compact. To verify this we observe that I 1is
contained in the order interval ({x ¢ X l z(k) - M Xx € 2(k) + M} and
therefore is precompact. It remains to show that § is closed. Since X is
metrizable we only have to check for sequential closedness. So let {w(m)}m>1

*
be a sequence in I which converges to w ¢ X. Then for every m > 1 there

eflm) (m)

is a 10,1} sequence = {eém)}k;z such that w € Lg(m). Now, by

passing to a subsequence if necessary, we can arrange things so that for any

k the sequence ’eém)1k>1 is eventually constant. If one runs through the

that the W,(m) and E;(m) converge to W ., and G’, respectively (where
e e

» _ {m)

M-

)0
* *
It follows that w ¢ I , and thus w € L.
e
Hence I is closed, and even compact.
We may conclude the proof of the proposition by noting that X = ¢(f) is

the continuous image of a compact set, and therefore also compact.

Proposition 7.4. The sets K, are pair wise disjoint.
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Proof: let R£+m represent a point in K Then we

(X__l,...,xm_1) € e*

can form its orbit under the diffeomorphism Fp (defined in section 2 ~ it is
a lift of @p)s wnich gives us a biinfinite sequence {xj}jez = X.

On the other hand, there must be an X € I such that

(x_z,...,xm_1)(mod Z) = 7(X). Since X is a solution of (2.4) it is uniquely

~

determined by its components (§_2,...,xm_1), and we see that

X = x (mod Z).
By proposition 7.2 we see that

X540 T Xy T "ej'Q'

| ¢

(7.5) <M+ Jg_((G41)Q) - ¢ _(39) = p, +Q]
j

= 2M .

We had assumed that (01'00)-9 > 4M, so that the inequality cannot be true
for both ey = 1 and ey = 0. 1In other words, given our point in K, Wwe can
find x, and from X we can compute the sequence e. Hence two different
xe's cannot overlap.

The proof of the last proposition also shows that we have a continuous
mapping € : X « 7 where 7T = fc,‘}z 18 the space of all (0,1} sequences

equipped wizh the pr hiot veo.ogy 1 1s homeomorphic to the Cantor set).

The mapp:in3 ¢ .S s.ir‘ective,
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pjj On C we have a homeomorphism, called the shift. It acts by gle)y, =
\:;::,{
?f ex+1+ Using the fact that if w ¢ L[,, then
&? ~ Sth
‘:?: w r_Q'_p(w) with P = -pe..Q
g ]
_-‘._l
b belongs to Lg(e)r and also the fact that
L)
Y 0 _
‘i“ (¢A) (m{w)) = n(w)
1S
AT
+
-\. “
AN one can verify that
o . R e}
L (i) K is invariant under (°A)
'\-.j' (1i) o ( e = ° i.e ( )QmasK t K
3 ::;.: € 0A g € Y -X} QA p e onco U(e)’
N
‘kn We can restate this by saying that (C,g) is a factor of (K, (QA)Q)-
_:3 By 2 standard result of ergodic theory this implies that PA has positive
-_}:_‘
oS topological entropy (see [Wa]).
AN
Ra” s
A We conclude this section with the following observation. If e ¢ C is a
i:,_ periodic sequence then the corresponding sub and supersolution, W, and E;,
Y
- are also periodic of type (k,%) for suitable k and ¢. By the second
NN addendum to theorem 4.2 we know that there must be a (k,%)-periodic solution
J -
':ﬁ We between W, and W Thus we obtain the existence of many periodic
o
:ﬁ: orbits of the map Pp°
‘\-"\
{: Indeed, if the sequence e ¢ C has period ko, then k = kgeQ. It
®
-;g? follows that the number of periodic orbits of ¢, whose period divides kp<Q
;_‘.:: ko
e is at least 2 ".
~: :-
.
ey
AT . ,
::,: §8. Twist maps with zero entropy
4N
: ) Using the criterion for positivity of the topological entropy which we
- 8
o
":’ derived in the last section, we now study monotone twist maps of the (two
‘e
g
o |
Ty
oo -25-
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dimensional) annulus A = R x s', whose entropy vanishes.

let ¢ be such a map, and let F be its 1lift to R2. We assume it
satisfies the conditions which were described in section 2. To any point P ¢ A
we associate the sequence ({x)(P)} where x (P) is the x coordinate of
FX(P') and P' is a lift of P. The sequence x)(P) depends on the
particular lift P' of P which we choose, but the sequence x,(P) - xq(P)
doesn't.

We define the forward- and backward-rotation numbers of P to be the

limits
. xk(P)-xo(P)
p,(P) = lim — %
- | T2
if they exist. We shall allow p,(P) to be += or -,

The main result of this section is:

Theorem (8.1). If the map ¢ has zero topological entropy, then every

P ¢ A has a forward and backward rotation number.

Our other result is:

Theorem (8.2). If the map ¢ has zero topological entropy and P 1is a

periodic point of type (p,q) with gcd (p,q) = 1, then the orbit of P is

a Birkhoff orbit.

This was originally proven by P. Boyland, using Thurston's classification

of surface diffeomorphisms.

We begin our proof of these theorems by assuming that we have transformed
the problem of finding orbits of the map ¢ to the problem of finding
solutions to the recurrence equation. (2.2).

let x, y ¢ X be two biinfinite sequences. We shall say that x and vy

intersect at the integer k if either

(Yk - xk) (Yk+1 - xk+1, < 0

-26= -
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- or

X
R Y = Xx and  (yxoq = Xkeq) (Yke1 = Xks1) <O

o holds.

>

':; Clearly x and y are ordered if and only if they do not intersect at
Y

Ny

" any integer k. In particular x is a Birkhoff sequence iff it does not
1

c"' intersect any of its translates, Tm,n(x"

0

o

Given a sequence x ¢ X, it can happen that, for some pair of integers

N
)
b (m,n), with m> 0, x and Tm,n(x) intersect at an infinite number of
_\;- positive integers k1, k2' Kgreee o We shall denote the set of (m,n) for
(L
N~
:.': which this occurs by J(x). 1In addition we define the corresponding set of
e
2 ratios:
! R(x) = (= | (mn) e Ix)}C Q
l.*: m ’ )
=N
_.'_-j Lemma 8.3. If R(x) is finite, then x has a forward rotation number.
‘G
i Proof: Define
% .
» X
_i: p = lim supk—k and p = lim inf;-)—(- .
e k+o koo
N
oy -
N If x does not have a forward rotation number, then p < p, and there has to
¥ -
ﬂ be a rational number a/b such that p < a/b < p. Moreover we can choose
oy
).t
e a/b in the complement of R(x).
\,-'
: Then x and rb'a(x) intersect only at a finite number of positive
o
. integers, and there must exist a k > 0 such that for all Jj > k one has
~I“”‘: Xj > xj“b + a
M
@. or, for all 3j » k one has xj < xj-b + a.
‘ .
L
.-;: In the first case one proves inductively that Xe49b 2 Xk + ga, so that
a0
:‘5 p 2 a/b which is impossible. The second case also leads to a contradiction.
2 Thus we have p = .;
jod
:: Note that we cannot exclude the possibility that the forward rotation
*ea)
. .
o..l =27~
L
N ‘
1 ’t

e

e o IR AT AT R e A e % £ X OO
LB .'“"1'0 N .t‘.\.n } * ?, 't d"‘q " 'p '. » .l“ .. :’l',:r ”ﬂ! .. ‘.. &‘.‘. “ ’ :&.‘. ... A t‘n‘t‘ﬂ!‘.:.“:.“:":._ (18 :\v‘. ¢




o
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ol
b
:,,.: number, which was shown to exist, is infinite.
) - _
... Lemma 8.4. _Ii R(x) contains two or more élements, then the map ¢ has
i
o positive topological entropy.
‘o
e 3t
v Proof: Llet a/b < c/d be two different elements of R(x), and assume
TS
,., that we actually have (b,a) ¢ J(x) and (d,c) € J(x). In particular we
\ ) ’
~.":- have b > 0 and a > 0.
¥ -
j; We shall construct a supersolution y whose backward rotation number
S
5 is a/b, and whose forward rotation number is c/d.
.-r Since x and 1y a(x) intersect infinitely often at a positive integer
oL
v there must exist a j » 0 such that
e (x)
' x. < T X), =x,., +a
= 3 b,a”’j j-b
%
o %541 > Tp,a®) 549 = Xjpqp * 2
e
:-:; holds. 1In other words there must exist a j » 0 such that X3 - Tb,a(")i
increases from negative to positive at j.
P - 7
'::}.' For i1 ¢ j we define y; as follows:
;‘..') ’
._{v.) yj xj ’ yj"1 xj“1'...'yj-b+1 = xj_b+1
2 Y. . = Yy = x -a Y = x -a
e Yyop %3 T2 ¢ Yyoper T Xyoq T @t Yyobe1 T Xyopet
.
P
.&'_',.: and in general for t = 0,1,2,...,b=-1, and s » 0:
Y o, —
: 3 - .
l‘n — — —
:"‘ Then we claim that for i ¢ j-1 one has A(yi_1,yi,yi+1) ¢ 0. Since the
Oy
t:" sequence ;i is periodic we only have to verify this for i = j-1, j-2,...,j~b.
at -
: Por 3j » i > j-b+1 one has Y; = Xj, 80 that
.0 h
e Y. oYY = = -1>i>j=b+2) .
Y Yy qr¥ye¥ypq) = A0 _qexypexi ) = 00 (371282042
Y
o~ At i = j-b+1 one has
' - - =
g BUY _qe¥ie¥ypg) = A0y ppe Xy peqr*yma)
.
e
LN =
*i:- < A(xj-b+2'xj-b+1'xj-b) 0
N
(N
W -28=-
o
b
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since A 1is increasing in its third argument, and xj-a < xj-b‘ A similar
argument can be used to verify the case i = j-b.
It remains to define ;; for i > j. Since x and 1q,c(x) also

intersect at an infinite number of positive integers there must be a k » 0

\

xk ? xk-d +c

k41 ¢ FKxeaer T -

such that

holds. Moreover we can choose k (much) larger than 3j. Given this k we
define y, =x; for j < i<k, forany t=1,2,...,d and s =0,1,2,...

we put

=xk+t + s.a .

;;+s.d+t
As above one easily verifies that ;. is a supersolution. Furthermore ;- has
a forward and backward rotation number equal to c¢/d and a/b respectively.
A similar construction can be used‘to construct a subsolution y with
forward rotation number a/b and backward rotation number c/d.
The sub- and supersolution, y and ;} satisfy the hypothesis (6.1) so
that theorem 7.1 tells us that the map ¢ has positive topological entropy.

This completes the proof of lemma 8.4.

Proof of theorem 8.1. If ¢ has zero topological entropy, then by lemma

8.4, the set R(x) has at most one element, for any given solution x of
(2.2). By lemma 8.3 this sequence must have a forward rotation number.

Observe that the reversed sequence ;k = x_) satisfies the recurrence
relation

A(xi-1lxi txi_‘_’) = 0
where A&(r,s,t) = A(t,s,r). The map corresponding to this (monotone)

recurrence relation is conjugate to the inverse of ¢ and therefore also has

=20 =
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zero topological entropy. Therefore the sequence X has a forward rotation

£

L
"

number, and the sequence x has a backward rotation number.

"
(
: Proof of theorem 8.2. lLet x ¢ X be a sequence which is periodic of 1
Ly
j type (p,q). Then for any (m,n) the sequences x and T (x) either do
- m,n
1
-V not interesect, or they intersect infinitely cften (since they are periodic
t ’
‘q with the same period).
cy
¢
3 The periodicity also implies that if x and Tm,n(x) intersect then
o x and Tm+q,n+p(X) do too. So if (m,n) e J(x), then (m+g,n+p) ¢ J(x)
2 and both n/m and (n+p)/(m+q) belong to R(x). Since we are assuming
b
)i: that ¢ has zero topological entropy we can apply lemma 8.4 to conclude
-,
! that n/m = (n+p)/(m+g). But this inplies that n/m = p/q.
;5j Our other assumption was that gcd(p,g) = 1. Therefore there is an
158
& .
o integer £ » 1 such that (m,n) = (2q,2p). This cannot be true, however,
N
n
r since we then would have Tm,n(x) = x so that they do not intersect.
L)
_: We see that the assumption that x and Tm,n(X) intersect for some
e
=
‘: (m,n) leads to a contradiction. So x does not intersect any of its
-
L\
translates, which means that it is a Birkhoff sequence.
s
7
N
i
' ,:,'
i\ §9. Existence of Birkhoff sub and supersolutions in general.
b)

We return to the more general monotone recurrence relation (2.4). Given

-

any w ¢ R the equation (2.4) need not have a Birkhoff solution with rotation

-~
X

number w. Instead of this, we have the following.

:,‘. v

-
WY Theorem 9.1. For any o ¢ R there is a Birkhoff sequence x ¢ B such
‘: that for some A € R
Lo
(9.1) A(xk-lo"'rxk...m) = A (k ¢ Z)
b
N (where )\ does not depend on k), and such that x has rotation number u.
»
;. «30~-
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In particular, x is either a subsolution or a supersclution.

Using this theorem we shall also prove the next result.

Theorem 9.2. If (2.4) has a Birkhoff subsolution x(0) and a Birkhoff

supersolution x(1) then it also has a Birkhoff solution x.

If wy is the rotation number of x(j) then the rotation number of x,

w, can be chosen between w; and wy fi.e., wg € w < wy OF wq < w < wye

depending on how wg and w4q are ordered).

Although there is a superficial resemblance between this theorem and
theorem 4.2, they are really different. The difference is of course that we
do not assume that the sub and supersolution in the last theorem are in any
way ordered.

We would also like to point out that, in the case of monotone twist maps,

relation 9.1 reduces to

Y(xk+

17%) = iﬁxk_1,xk) + A
in the notation of section two. Therefore solutions of 9.1 correspond to
orbits of the "translated twist map" given by
Fy(x,y) = (f(x,y), g(x,y) + 1)

(again we use the notation of section two).

These maps have been studied before, e.g. by Chenciner in [Ch, section
6]. Our main motivation for studying (9.1), or the Fx's is that they seem
to be a natural one-parameter family of maps, or recurrence relations
associated to A. Moreover theorem 9.1 leads to a convenient proof of theorem
9.2,

We begin the proof of theorem 9.1 with the following observation. If
there is a dense set of w's in R, for which the theorem holds then it is
true for any real . Indeed, suppose we can construct Birkhoff orbits

x(j) ¢ B with rotation numbers m(j) and suppose the m(j) converge to some

~31-
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w € R. Then we may assume that the x(j) satisfy 0 xéj) < 1, and by the
compactness criterion of section three (see 3.1)-we can extract a convergent
subsequence. The limit of this subsequence will be the desired Birkhoff orbit
with rotation number w. (This trick is not without precedent, see [Ka 1].)

The theorem is also true if it holds for any A which satisfies the
following strict monotonicity condition
(9.2) A= A(x_l,...,x+m) is strictly monotone

in each Xy except Xg.

To see why this is true, let A be any function which satisfies a b

and ¢ from section two. ‘Then

m

B(x_poex, ) = Alx_jeex ) + e(-g x5 = (p4m)x)

still satisfies a, b and ¢, and in addition satisfies condtion (9.2), for
any € > 0. So for any € > 0, A, has a B‘-khoff sequence x€ which
satisfies (9.1), and has rotation number . Again we may take a cluster
point of the x® as € + 0 to obtain a solution of 9.1 for our original A
with the appropriate rotation number.

So from here on we assume that w = p/q, and that A satisfies (9.2).

Moreover we suppose gcd(p,q) = 1, and q > 4.

We shall show that a solution of (9.1) must exist by means of a homotopy

argument.
Let Bp’q denote the set of (p,q) periodic Birkhoff sequences. Then
Bp,q 1is not empty; it contains the sequence x4 = jp/q. The set By . is a

closed convex subset of the vectorspace X. If we let Xp'q denote the
affine subspace of X which comprises all (p,q)-~periodic sequences, then
Bp,q has nonempty interior in xp'q.

By the compactness criterion of section three, the set

-32-
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Y
s is compact. 1In fact D is homeomorphic to the (g-1) dimensional unit ball
::- in ®"', and the mapping
*h.‘ .
j":_: (9.3) X € Bp:q + (xg) x (0,x1-x0,...,xq-xo) e RxD
o
') is a homeomorphism of B,,q With R x D.
N A
"'-t: The Z-action on Bp'q induces a Z-action on R x D. This induced action
a8
;{ is given by "addition to the first coordinate", i.e. (x,d)ek + (x+k,d) if
13,
x ¢ R and 4 ¢ D.
-51".‘
1 '\-:.' We let K denote the quotient
o
':w" K = Bp'q/z
" L
Ef and let 3K be its boundary 293K = (asp,q)/z, vhere aap'q is the boundary
.':i.\
NN of Bp,q in Xp,q°
WS -
N Using the homeomorphism (9.3) we see that K ~ S1 x D and 23K ~ S‘| X Sq 2.
[ 4
_- . On K we define a continuous mapping into R4, given by
<o § : K+ R
5 ]
P 6(x)i A(xi-z""'xiﬂn) (1<ix<q) .
-
.‘:: At first sight it looks as 1f § is only defined on B, ., but the
A
A .
“'.';': periodicity of A makes that § is also well defined on the quotient.
B
LM
(] Given § we define one more mapping, eg:
' ’
‘VI, 1 1 -
~ € (%) = 8, (x) = — ] 850x) (k= 1,2,0000q) .
ML i=1
\ .
oo Thus, ¢ is a map from K to the subspace
-
"5!'. A= {(61,...,6q) P ! | §q + 62+...+5q = 0}
bl"'
'l
A5 of Kl., wWe have constructed ¢ in such a manner that so;utions of (9.1) are
e,
{ X exactly the zeroces of €.
e
":j Lemma 9.2. ¢ does not vanish on 3K.
-r::
o -33-
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:}:3 Proof. let x and y be any pair of solutions of (9.1), and assume
e
-';.:_ that x < y. Then we claim that the strict monotonicity hypothesis (9.2)
{
( implies x << y.
’ ]
b
f: Indeed, if for some k we would have X = Yy then
:'-.J
;--_ A(xk-!.”"'xkﬂn) = A(Yk-l""'yk-ﬂn) (= 1)
')
N combined with the strict monotonicity of A shows that we really have Xe-§ =
A
‘:,_. Yk-j for - ¢ < j < +m. By repeating this argument one finds that X{ = Yy
h \!
o
-a¥ or x; < y; holds for all i ¢ 2.
AS : . .
; ti An Xx ¢ xp,q belongs to Bp'q if and only if for any pair of integers
\: (k,2) one has Tk,ﬂ,(x) » X or Tk,z(") € Xx. The same point will belong to
Do A
Do
- the boundary of Bp'q if, in addition, for some (k,%) one has Tk,z(x) > x
3-::?:'_ {or Tk,z(") < x) but not Tk'z(x) >> x (or Tk,z(") << x respectively).
“
-':‘_-'_ If this point were a solution of (9.1), then Tx £(X) would be one too
=, ’
L S
r
-.. so that Tk,!,(") > x would imply -rk'z(x) >> x. But that would contradict
\j.? X € aBPrq.
o
, :: We conclude that ¢ does not vanish on the boundary of K.
P
' This lemma shows that g defines a mapping from 23K into A\{0}. We
::':: consider the associated homomorphism nq_z(e) : nq_z(al() > “q-z(l\\{o}) of
Y -
J'\-' ’
..-:.r homotopy-groups. Note that these groups are well defined since we have
o
Y
..Q' assumed that q > 4.
_.:- W 1 q-2
N e already saw that 23K ~ 8 x8§ so that
oy
”i-v n (3K) ~ (S‘) R (Sq-z) ~2Z .
S q-2 = ‘q=2 q-2 =
'0’ —2
RiC Furthermore, A\{0} has the homotopy type of s9 so that
"
;:.,?:_ wq_z(l\\{o}) ~ 2z, It follows that the homomorphism vq_z(e) is represented by
? an integer, which we shall call its degree. This degree is defined up to its
9.,
:.. y sign, which depends on the choice of generators of the groups ”q-z(ax) and
i) L
L)
l::.ﬁ
‘!
"
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wq-z(A\{O}) which we have implicitly made.
If the degree of ¢ 1is nonzero then ¢ must vanish somewhere in K.
Indeed, if e(x) # 0 for all x ¢ K, then we may write elax = g o j, where
j : 3K + X 1is the inclusion mapping. Since nq_z(x) ~ “q-2‘s1 x D) =0
(here we use q > 4, and the convexity of D) the composition ﬂq_z(e) . wq_z(j)
vanishes, so that the degree of ¢ is zero. Therefore we can complete the
proof by showing that this degree is nonzero.

With this end in mind we observe that the set

(A € Co(Rl+m+1) | A satisfies a, b, ¢ of section 2, and also (9.2)}

is convex and therefore certainly connected. This means that all the maps ¢
which we have just considered are homotopic on 3K, and they all have the
same degree. We can compute this degree by looking at any particular example
that pleases us.

Consider the following choice of A:

A(x-l,...,xm) = x_z+...+xm - (1+m+1)-x0 .

We choose coordinates g,,...,gq on xp'q which are defined by

x, = kp/q + E (1<k<q) .

o w ¢« 0 or k » gq+! we define £, by assuming that Ex+q = Ex holds.

e may 1dentify Xp q with the group ring of 2/q2%, so that multiplication
’

b Y

or. Xp 4 18 defined by convolution of the g, -coordinates:

q-1
(g*n). = J g . n. -
k 3=0 k=3 '3

@

The map § q* ¥ is simply given by

X
P

AR

Dl

‘;
.

§(E) = y*¢

II..

- (L+m+1)oeo, and ey represents 3j ¢ Z/qZ in the group
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ring of 2/gqZ. The map ¢ is given by
e(g) = y*g - Av(y*E) = y*(g - Av(E))
where Av g = (g1+...+gq)/q. ’

The characters of Z/qZ are given by

‘ _ _2nijk/q
xj(ek) = e
for j, k ¢ Z/q%Z.
One finds that
+m
274
3 Kemg

so that if j # 0 mod (q) one has

[%50y) + 24m+1] < game

and thus Re(xj(y)) < 0, and in particular one sees that xj(y) # 0.

This implies that the only 2eroes of ¢ are given by §, = constant,
i.e. by x = k-§-+ Xq* This discussion also allows us to compute the degree 1
of ¢. Indeed, the map ¢ restricted to the subspace of Xp,q' which is ‘
defined by x5 = 0, 1is linear. Its kernel consists of those £ for which
Xg(E-AV(E)) = 0, i.e. which are constant. So restricted to {x € Xp,q : xg = 0}
it is injective. It follows that the degree of eIaD + A\{0} is *1. Since
the inclusion of 3D in 03K ~ s1 x 3D induces an isomorphism on the (g-2)-
dimensional homotopy groups the degree of ¢ : 3K + A\{0} is also given by
+1 or -1,

The proof of theorem 9.1 is complete.

We turn to theorem 9.2.

Define the following two subsets of R.

RO 2 S SN A SRS Gl
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e Rot+ = {w ¢ R | d x ¢ B: x 1s a supersolution and

= :

\}: x has rotation number y}

M
!'; . Rot_ = {w ¢ R [ 4 x ¢ B: x 1s a subsolution and

e

N x has rotation number u} .

fk; It follows directly from theorem 9.1 that the union of Rol, and Rot_ 1is
‘;) ’ all of R. Moreover if we define:

0 . . .
K[ Roty = {w € R I there exists a Birkhoff solution of

T rotation number g}

SN
+“Ba

then we have Rot0 = Rot, N Rot_. Indeed, the inclusions "c" are trivial,

.I‘ -
2:{ and if w belongs to Rot, and Rot_ then there exist a Birkhoff sub-

)

-‘,‘:‘ -
-:}: solution x and a Birkhoff supersolution x, both of which have rotation
-
B -

number . For a suitable large integer M one will have x - M < x +M (in

O

-

2: view of the inequalities (3.1)) and theorem 4.2 plus the addendum following it
W

g -

xb tell us that there exists a Birkhoff solution between x - M and x + M.

)
‘o

oy,

Hence w ¢ Rotg.
e Using the compactness property described in section three one easily

shows that the sets Rot, and Rot_ are closed.

.+ e
[T T

The hypothesis of theorem 9.2 is that wy ¢ Rot_. and w4q € Rot,. Assume

.
by
=

_:} that wp € wy. Then we have just shown that there are two closed sets A, =
-.,l. -

h.J \ » . : (] 1
NN (wgrwq]l N Rot. whose union is the interval [wg,wq], and neither of which is
"

!v empty. Since the interval is connected the intersection A, N A_ 1is nonempty.
wo

n\_

,:: Therefore there exists a Birkhoff orbit with rotation number w ¢ [wgrwql.
di The same line of reasoning can be followed when wq < wgs SO that we have
.!E completed the proof of theorem 9.2.
28
’*b If we are dealing with the two lowest dimensional cases £ =0, m = 1
B
: e (i.e. degree one circle maps) and £ =m =1 (i.e. twist maps of a 2-
14 .t.

e dimensional annulus) then we can improve the previous results.
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Theorem 3.3 (¢ =0, m = 1). If o : s!' + 81 has degree one then it has

a Birkhoff orbit.

Proof. Let f : R+ R be a lift of ¢, i.e. f ¢ CO(R,R) and
f(x) + 1 = f(x+1). Then M = suplf(x) - xl is finite, and one easily
verifies that

X = =neM , x = +neM
- n

are a sub- and a supersolution for A(xo,x1) = xq - f(xo). By theorem (9.2)
we know that there exists a Birkhoff solution of A(xn,xn+1) = 0.
In the next Theorem we consider a monotone twist map ¢ of the two
1

dimensicnal annulus S x R.

Theorem 9.4. If there exist a < b such that ¢ maps the ring S1 x [a,b]

into itself then ¢ has a Birkhoff orbit.

-—

Proof. Ilet F = (f,g) be lift of ¢, and define the functions Y, Y

and A as in the beginning of section two. In addition, we consider two

]

:: auxiliary functions defined by £ (x) = f(x,a) and fL(x) = £(x,b).

~

>

:: Then f, represents a degree-one circle map, and the previous theorem
.

5

says that there exists a Birkhoff sequence x, for which x,;4 = fy(x,) (neZ)
holds. If one checks the definition of VY, ;- and A then one finds:
Y(XnrXnsq) = 2
Y(’_‘n_1'£n) = g(xn_1,Y(xn_1,xn)) » a

o ==> A(Xn-1:Xn:Xn+1) 2 0 -

rb

v,

) So x, is a Birkhoff subsolution. By a similar argument a Birkhoff orbit for
4'8
‘;J the map f,, must be a Birkhoff supersolution for A.

nJ N

Cay]

:: It follows that the map ¢ has a Birkhoff orbit.

-

-
"f",
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§10. The symplectic case.

.;33}5

In this final section we draw the reader's attention to a subclass of

& monotone recurrence relations whose associated map preserves a symplectic
‘ot structure. Not surprisingly, these recurrence relations are those which can
e be derived from a variational principle.

Our construction goes like this. let h ¢ cZ(rd*Y) satisfy

x.
B (10.1) Pxexy > 6 (k#2)

for some constant § > 0. Then we define the formal sum W(x) for x ¢ X by

L)

reee X, ) .

Wix) = z h(xj,x. j+d

jez j+1

Ry

NED

.
.

AN
MR

This sum will not converge in general, but if x, y ¢ X coincide except for a

[ 4
\
H o

finite number of components, then the a priori formal expression W(x) - W(y)

25\

will lead to a finite sum. Hence one can define the derivative of W at an

Rt

X ¢ X« One finds that:

¢
P

ot

oW
< —_—— e e ) + s s + oo
axj hd(xj_d, txj. hd-1(xj-d+1' Ixj+1)

L
. 4 v 1] a [ I ]

ceee + ho(xj,..-,xj+d)

5 &

def
= A(xj-d,oov'xj+d)

L}

"....‘l '-l ‘.l
P

The requirement that W be stationary at x ¢ X is therefore equivalent to

i

l:h
1 2%,

-

2@

SO AR A

the recurrence relation
(10.2) A(xj-d"..'xj+d) = 0 (jeZ) .
o If we assume that our original "generating function®™ h is periodic in the

< SkN sense that

+ NI

A

h‘x°+1'clo,Xd+1) E h(xo,...,xa) + o

5%
2%

LY 5

holds for some constant ¢ ¢ R then J satisfies the periodicity requirement

X¥ate

K

of section 2. From
~39-
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(A% R SO et Y R R ad el tal Sl L N et |

o

*

E:j'.: 2 A% _,.eux. ) =h (X, peeesX, ¥eeath (X ,eee,x.)

A4 axi -d +d d-i,d "i-d i 0,i" "0 d
\ v

e :

P if 0 < i < d and a similar expression for 3A/3x; if -d < i < 0 one sees

{

W that A also satisfies the monotonicity condition, and the coerciveness
b
b
‘i{{ condition of section two. We conclude that the recurrence relation (10.2) is
L monotone as we have defined the term.

\ ) ’

- The recurrence relation 10.2 therefore defines a C! diffeomorphism of
;f: the 2d-dimensional annulus A29 ~ s' x R2d-1, e denote this map by P (as
s.'-\ —

o in section 2).

, ;- We proceed to construct an invariant symplectic form for op°

7 Sl

' o

1A Consider the "partial action" function

e

O

) -.,' _ _ 4 - _

.'" S(x1,-.-,xd, x1,o--,xd) = ‘z h(xj-..xd x1...xj) .

o j=1

N

,:§: If x ¢ X is a solution of (10.2), then

'

T

) S

1 = S(x_d+1,...,x0,x1,...,xd) + S(x1...xd,xd+1,.‘.,x2d)

-

:f; is stationary with respect to variations of x4,...,X4q. Regarding S; as a

function of Kyreos Xy the relation ds1 = 0 may be written as

‘ (10'3) ZYj(x=d+1,o..,xd)dxj = EYj(x1,ooo,x2d)dxj
v::: where
l’-
o 3s
L -— —_ _ .
.-'_.-(:, Yj(x1,...,xd,x1,-.-,xd) = _ax. (1 < J < d)
D) 3 |
-l R
'\:\ as i
L™ .S -~ -_— -—
'v-. c e o0 e s - — 1 < ' ‘ d .
_\::\ Yj(x1 xd,x1 xd) 3;_ ( 3 )
‘:‘\ J
[} Pl
.12: It follows from (10.3) that, if we write 8 for Y1dx1 +eee+ Yydxg then
o
'fﬁ *
s 8 - 9,(6) = ds
) .'::
v
o so that ¢, preserves the two form -d6 = w. The matrix whose (i,j) entry
-4
.j}: is an/axi+d is lower-trianqular, with positive numbers on the diagonal, so
I
g
e
> -40-
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that the 2~form dw = -(dY1 ~ dx1 +eset de - dxd) has maximal rank, and is a
symplectic form.
A very special case arises if one takes

d

1 2 X
h(xo,...,xd) =-3 j£1 Yj(xo-xj) + o cos Zﬂxo

with YqreeosYg > 0 and k ¢ R constants. The associated A is

d

A(X_greveixg) = j£1 yj(x_j - 2, + x+j) + k sin (2mx)

and the corresponding map ¢, generalizes the so called "standard map” (i.e.

the case 4 = 1, Yq = 1).

As an application of the results of section 7 we note that when

d
k > I, j
Ey=1 375

- 1
one has a supersolution xj = %-+ ljl and a subsolution Xy =7 |35] which

satisfy (€.1), so that the map ¢, has positive entropy.

By analogy with the Aubry-Le Daeron theory [ALD] one could say that the
solutions of (10.2) describe the equilibrium states of a bi-infinite chain of
'particles in which any sequence of d + 1 consecutive particles contributes
an amount equal to 'h(xj""'xj+d) to the total energy of the chain The
number xj then represents the position of the j-th particle. See fig. 3.
From here on we assume that h is truly periodic, i.e. that & = 0.

As in the Aubry-Le Daeron theory one can show that the function

q
. W(x) = z h("i""'xi+d)
i=1

is well defined on xp’q/z, and in fact is proper on this space. Hence W

achieves its maximum on X and for any (p,q) we obtain the existence of

P.q’
a periodic orbit of ¢, of type (p.q).
A
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Fig. 3. A chain of particles with nearest
and second nearest neighbour interaction.
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B oot Using the positivity of the mixed derivatives one also shows that for x,
N
Y € xp q ©ne has
’
) W(x) + W(y) < W(x v y) + W(x o y)
where . and . denote the usual lattice operations on xp a (one could
’
adapt the proof on page 520 of [Ma 2]). Thus if x maximizes W on xp q
’
then so does Tk,lx for any k, £ and one finds that
2 W) CWOx v e g (X)) + WX & Ty, p(x)) ¢ 2 Wx).
Hence x Tr-l(x) and x Tk,E(X) also maximize W, and therefore must be
solutions of (10.2). Since our A satisfies condition (9.2) the proof of
lemma 9.2 indicates that we either have x . Tk,l(x) > X Or X a Tk,l(x) = x;
. .
. in other words x and Tk,l(X) are ordered
b )"
I The conclusion is that any x ¢ xp q which maximizes W is a Birkhoff
P s, ’
SN
bﬁ? sequence. |
: - Finally we note that, just as in the Aubry-Le Daeron case, oOnhe can ocobtain
'
'iu, Birkhoff orbits with prescribed rotation number by taking limits of similar
I
) orbits with rational rotation number.
J
o
L0~
™
o
s
I
!
~§
oo
i
AN
..
)
h‘:)'
.‘.::“
e
o
1v‘.
.l...:
0
b
W
e 43
o
C. -
L)
L T e N MY LT
M AN AA [, N 50,5, WY ! WL, Y A% W Wy 0% 0 47, i AN -5 n LA By N ."';‘.."!lﬁ,!n.!'u‘ﬁl‘..h"»




Hq REFERENCES
-
. ::\‘
( q _
o [ALD] S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and
[
- its generalizations, Physica 8D (1983) p. 381-422.
b, A -—
’a\é [Bo] P. Boyland, Braid types and a topological method of proving positive
YP p
)
’_J entropy, preprint.
N
o
;:, [Ch] A. Chenciner, Bifurcations de points fixes elliptiques II, orbites
0 |
() periodiques et ensembles de Cantor invariantes, Inventiones. Math.
Ay 80 (1985) p. 81-106.
N ==
h .‘i.
3:,: [Ha 1] G. R. Hall, A topological version of a theorem of Mather on twist
e,
,\i' maps, Ergodic Theory and Dynamical Systems, 4 (1984) p. 585-603.
s [Ha 2] G. R. Hall, A topological version of a theorem of Mathsr's on
%"i shadowing in monotone twist maps, preprint.
?::; [Ra 1] A. Katok, Some remarks on Birkhoff and Mather twist theorems, Ergodic
4
1y
N Theory and Dynamical Systems, 2 (1982) p. 185-194.
3;: [Ka 2] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeo-
AN
NAS
L. morphisms, Publ. Math. de 1'I.H.E.S., No 51 (1980) p. 137-174.
)
atqj {Ma 1] J. N Mather, Mcre Denjoy minimal sets for area-preserving diffeo-
i Y
» ub.
L7 morphisms, Comm. Math. Helv. 60 (1985) p. 508-557.
-
':\.J
b (Ma 2] J. N. Mather, Dynamics of Area Preserving Mappings, preprint.
®
b {wa) P. Walters, An introduction to ergodic theory, Grad. Texts in Math.,
l“
2 . Springer-Verlag, New York (1982).
0' .
W |
1 8
.
-
e
\-"
o
?
a. SA/j vs
L)
¥
1‘4:.,
R ~44-
@ ¢

AT - a -~ .t & "8
R AT NI TS R T e e o T S I



v

{;. ,0,

«
o oa_d S
4 v & oL A b e

t,‘ -.v ".‘-

EE

- ~.. p - = «
"f!” ] [ L
ALY SOOI ’

e/

» {.
kY
. »

b

- AN - 3
[N “~ ‘ '}-"){

L
"‘,'_,',;';

-
."l
L
P

x » :l Pq o o4
"d. ?\: AN AR

M
a4

l

o N T TR T
LA < _-{"‘-.'
P S

bl w7y - g
K N o W
‘.n .\“' '{o’ '0'.% M :\ ':' ":i': ‘h' 35

DUON ‘,- ) ‘.0",!".| 4 ‘.l‘ .0.' 0:‘1'

o . [ J
R

.‘i. 0



